Gold mediated glycosylations: selective activation of propargyl 1,2-orthoesters in the presence of aglycones containing a propargyl moiety[†]

Gopalsamy Sureshkumar and Srinivas Hotha*

Received (in Cambridge, UK) 21st April 2008, Accepted 27th May 2008 First published as an Advance Article on the web 21st July 2008 DOI: 10.1039/b806707d

Selective activation of propargyl 1,2-orthoesters in the presence of propargyl glycosides and propargyl ethers was studied; a catalytic amount of $AuBr_3$ activated the propargyloxy group of the 1,2-orthoester thereby giving access to disaccharides with the propargyl group at the reducing end; furthermore, propargyl ethers were unaffected under the reaction conditions.

Synthesis of molecular scaffolds *via* alkyne activation exploiting alkynophilic gold catalysts has gained a lot of attention in the recent times.¹ Frequently, one of the intermediates (vinyl–Au) in the catalytic cycle is trapped by the carbon electrophiles,² a proton,² sulfonyl,³ benzyl⁴ and silyl groups⁵ giving access to interesting chemical architectures.⁶ However, we postulated that the expulsion of the vinyl–Au intermediate (**A**) from the pyranosyl ring occurs when a propargyl glucopyranoside (**1**) was treated with a gold(III) catalyst resulting in the formation of an oxocarbenium ion (**B**) which when attacked by an aglycone yielded a mixture of α , β -glucopyranosides (Scheme 1).⁷

Later on, propargyl 1,2-orthoesters were utilized for the 1,2-*trans* stereoselective synthesis of glycosides and disaccharides upon treatment with AuBr₃ in the presence of 4 Å molecular sieves powder at room temperature.⁸ In this communication, we report our recent results which imply that AuBr₃ selectively activates the propargyloxy group of 1,2orthoesters in the presence of competing propargyl glycosides or ethers.

To begin our investigation, propargyl 2,3,4,6-tetra-*O*-benzyl- α -D-glucopyranoside (1) and aglycone **2** were treated with 10 mol% of AuBr₃ in acetonitrile to obtain an α , β -mixture of disaccharides **3** in 68% yield at 60 °C while no reaction occurred at room temperature.^{7a} The propargyl 1,2-orthoester of glucose (**4**) reacted with the same aglycone **2** at room temperature affording 1,2-*trans* disaccharide (**5**) in 65% yield (Scheme 2). In this premise, we envisioned that the preferential activation of propargyloxy group of the 1,2-orthoester can be achieved in the presence of propargyl glycoside if the reaction was performed at the room temperature in the presence of a catalytic amount of AuBr₃ and 4 Å molecular sieves powder. If

successful, we should be able to synthesize disaccharides with the propargyl group at the reducing end which in turn can be exploited to synthesize glycoconjugates.⁹ Many benefits envisaged by orthogonal activation¹⁰ of *n*-pentenyl orthoesters in the presence of *n*-pentenyl glycosides were recently illustrated by Fraser-Reid *et al.*^{10a} Thus we studied the effect of AuBr₃ in a reaction containing both propargyl 1,2-orthoester as well as the propargyl glycoside. Accordingly, we designed an aglycone **6** in such a way that it possesses both propargyl glycoside and hydroxyl functionality.

The glycosylation reaction between propargyl 1,2-orthoester (4) and propargyl glucoside (6) at room temperature revealed that AuBr₃ activated the propargyloxy group of orthoester to work as a glycosyl donor resulting in the formation of a disaccharide 7 with the propargyl group at the reducing end.^{11,12} In the ¹H NMR spectrum of compound 7, the presence of the propargyl moiety was evident since the resonances due to the alkyne group were noticed at δ 2.38 ppm (1 H, t, J 2.3 Hz) and the ¹³C NMR spectrum showed resonances due to two anomeric carbons at δ 95.0 and 101.3 ppm indicating the presence of two sugar residues.¹¹

Scheme 2 Synthesis of disaccharides by gold catalysis.

Division of Organic Chemistry, Combi Chem—Bio Resource Center, National Chemical Laboratory, Pune, 411 008, India. E-mail: s.hotha@ncl.res.in; Fax: +91 20 2590 2624; Tel: + 91 20 2590 2401 † Electronic supplementary information (ESI) available: General experimental procedures and ¹H, ¹³C, DEPT NMR spectral charts. See DOI: 10.1039/b806707d

Table 1 Synthesis of disaccharides as propargyl glycosides

This interesting observation was then investigated for the generality by means of aglycones containing secondary alcohols (8 and 10) and a ribofuranoside (12). In all the cases the reaction proceeded smoothly giving the respective disaccharides (9, 11 and 13) in good yields (Table 1).¹¹ In continuation, the general applicability of the current study has been extended to the propargyl 1,2-orthoesters of mannose (14) and galactose (16).¹¹ Gratifyingly, mannosyl orthoester 14 reacted with the aglycone 6 affording disaccharide 15 in good yield and concurrently galactosyl 1,2-orthoester 16 also reacted with aglycones 6, 8 and 12 resulting in the formation of disaccharides 17–19 with the propargyl group at the reducing end.¹¹ It is pertinent to mention that the formation of 10-15% of propargyl 2,3,4,6-tetra-*O*-benzoyl- β -D-glycopyranoside was observed along with the required disaccharides.

Furthermore, the selectivity of AuBr₃ towards the propargyl 1,2-orthoester in the presence of propargyl ether of monosaccharides was also explored (Table 2). Accordingly, the propargyl 1,2-orthoester of glucose (4) was allowed to react with aglycone having 4-*O*-propargyl ether (20) under AuBr₃/CH₂Cl₂/4 Å molecular sieves powder conditions at room temperature to obtain a disaccharide (21) with the 4-*O*-propargyl group intact.¹¹ In the ¹H NMR spectrum of compound 21 the alkyne –CH was noticed at δ 2.38 ppm (1 H, t, *J* 2.3 Hz) and the ¹³C NMR spectrum confirmed the presence of two sugar residues by showing resonances due to anomeric carbons at δ 97.6 and

Table 2 Synthesis of propargyl ether containing disaccharides

101.3 ppm. Also, we synthesized a disaccharide (23) from the glucosyl donor 4 and the galactosyl aglycone (22) in 71% yield.¹¹ In addition to this, we have also noticed that the aglycones 20 and 22 reacted well with propargyl 1,2-orthoesters of galactose (16) and mannose (14) to give disaccharides (24–26) containing the propargyl ether unaffected.¹¹

In summary, we have investigated the selective activation of propargyl 1,2-orthoesters in the presence of propargyl glycosides and ethers using a catalytic amount of AuBr₃. It is interesting to note that the AuBr₃ activated the propargyloxy group of 1,2-orthoesters though there is a competing propargyl moiety present in the reaction system. The utility of these propargylated disaccharides is currently underway to synthesize pseudo-oligosaccharides, neoglycoconjugates and higher saccharides.¹³ Results from such studies will be reported in future.

S. H. thanks DST, New Delhi for the financial assistance. G. S. K. acknowledges the CSIR, New Delhi for financial assistance.

Notes and references

(a) A. S. K. Hashmi, Angew. Chem., Int. Ed., 2005, 44, 6990–6993;
 (b) S. Ma, S. Yu and Z. Gu, Angew. Chem., Int. Ed., 2006, 45, 200–203;
 (c) R. A. Widenhoefer and S. Han, Eur. J. Org. Chem., 2006, 4555–4563;
 (d) N. Asao, Synlett, 2006, 1645–1656;
 (e) L. Zhang, J. Sun and S. A. Kozmin, Adv. Synth. Catal., 2006, 348, 2271–2296;
 (f) A. S. K. Hasmi and G. J. Hutchings, Angew. Chem., Int. Ed., 2006, 45, 7896–7936;
 (g) D. J. Gorin and F. D. Toste, Nature, 2007, 446, 395–403;
 (h) A. Fürstner and P. W. Davies, Angew. Chem., Int. Ed., 2007, 46, 3410–3449;
 (i) A. S. K. Hashmi, Chem. Rev., 2007, 107, 3180–3211.

- 2 (a) L. Zhang, J. Am. Chem. Soc., 2005, 127, 16804–16805;
 (b) I. Nakamura, T. Sato and Y. Yamamoto, Angew. Chem., Int. Ed., 2006, 45, 4473–4475.
- 3 I. Nakamura, U. Yamagishi, D. Song, S. Knota and Y. Yamamoto, *Angew. Chem., Int. Ed.*, 2007, **46**, 2284–2287.
- 4 P. Dube and F. D. Toste, J. Am. Chem. Soc., 2006, 128, 12062–12063.
- 5 I. Nakamura, T. Sato, M. Terada and Y. Yamamoto, *Org. Lett.*, 2007, **9**, 4081–4083.
- 6 (a) A. Hoffmann-Röder and N. Krause, Org. Biol. Chem., 2005, 3, 387–391; (b) A. S. K. Hashmi and G. J. Hutchings, Angew. Chem., Int. Ed., 2006, 45, 7896–7936; (c) A. S. K. Hashmi, Chem. Rev., 2007, 107, 3180–3211; (d) R. Skouta and C.-J. Li, Tetrahedron, 2008, 64, 4917–4938; (e) J. Muzart, Tetrahedron, 2008, 64, 5815–5849.
- 7 (a) S. Hotha and S. Kashyap, J. Am. Chem. Soc., 2006, 128, 9620–9621; (b) S. Kashyap and S. Hotha, Tetrahedron Lett., 2006, 47, 2021–2023; (c) S. Kashyap, S. R. Vidadala and S. Hotha, Tetrahedron Lett., 2007, 48, 8960–8962.
- 8 G. Sureshkumar and S. Hotha, *Tetrahedron Lett.*, 2007, **48**, 6564–6568.
- 9 (a) R. R. Schmidt, Angew. Chem., Int. Ed. Engl., 1986, 25, 212–235;
 (b) K. Toshima and K. Tatsuta, Chem. Rev., 1993, 93, 1503–1531;
 (c) R. R. Schmidt and W. Kinzy, Adv. Carbohydr. Chem. Biochem., 1994, 50, 21–123; (d) K. M. Koeller and C.-H. Wong, Chem. Rev., 2000, 100, 4465–4494; (e) H. M. Nguyen, Y. Chen, S. G. Duron

and D. Y. Gin, J. Am. Chem. Soc., 2001, **123**, 8766–8772; (f) O. J. Plante, E. R. Palmacci and P. H. Seeberger, Adv. Carbohydr. Chem. Biochem., 2003, **58**, 35–54; (g) G. Ragupathi, F. Koide, P. O. Livingston, Y. S. Cho, A. Endo, Q. Wan, M. K. Spassova, S. J. Keding, J. Allen, O. Ouerfelli, R. M. Wilson and S. J. Danishefsky, J. Am. Chem. Soc., 2006, **128**, 2715–2725; (h) D. P. Galonić and D. Y. Gin, Nature, 2007, **446**, 1000–1007.

- (a) B. Fraser-Reid, J. Ku, K. N. Jayaprakash and J. C. Lopez, *Tetrahedron: Asymmetry*, 2006, **17**, 2449–2463; For orthogonal activation studies see: ; (b) R. Geurtsen, D. S. Holmes and G.-J. Boons, J. Org. Chem., 1997, **62**, 8145–8154; (c) P. Pornsuriyasak and A. V. Demchenko, *Tetrahedron: Asymmetry*, 2005, **16**, 433–439; (d) P. Pornsuriyasak and A. V. Demchenko, *Chem. Eur. J.*, 2006, **12**, 6630–6646; (e) A. V. Demchenko and C. D. Meo, *Tetrahedron Lett.*, 2002, **43**, 8819–8822.
- 11 See ESI[†].
- 12 General experimental procedure for $AuBr_3$ mediated glycosylation: To a solution of glycosyl donor (0.1 mmol), glycosyl acceptor (0.11 mmol) and 4 Å powdered molecular sieves in anhydrous CH₂Cl₂ (5 mL) was added AuBr₃ (10 mol%) under argon at room temperature. The reaction mixture was stirred at room temperature for the specified time and then filtered and the filtrate concentrated *in vacuo*. The resulting residue was purified by silica gel column chromatography using ethyl acetate–petroleum ether as the mobile phase.
- 13 S. Hotha and S. Kashyap, J. Org. Chem., 2006, 71, 364-367.